
HW2

Student Presentation (Generative Models)
paper titles venue speakers

A Style-Based Generator Architecture for Generative Adversarial
Networks (StyleGAN) CVPR 2019

Large Scale GAN Training for High Fidelity Natural Image Synthesis
(BigGAN) ICLR 2019

Generating Diverse High-Fidelity Images with VQ-VAE-2 (VQ-VAE-2)
NeurIPS

2019

Conditional Image Generation with PixelCNN Decoders (PixelCNN)
NeurIPS

2016

Glow: Generative Flow with Invertible 1x1 Convolutions (Glow)
NeurIPS

2018

Analyzing and Improving the Image Quality of StyleGAN (StyleGAN2) CVPR 2020

Denoising Diffusion Probabilistic Models (DDPM)
NeurIPS

2020

Denoising Diffusion Implicit Models (DDIM) ICLR 2021

Large scale adversarial representation learning (BigBiGAN) ICLR 2019

Alias-Free Generative Adversarial Networks (StyleGAN3)
NeurIPS

2021
SinGAN: Learning a Generative Model from a Single Natural Image

(SinGAN) ICCV 2019
Score-Based Generative Modeling through Stochastic Differential

Equations (SDE) ICLR 2021

https://arxiv.org/abs/1812.04948
https://openreview.net/forum?id=B1xsqj09Fm¬eId=B1xsqj09Fm
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1606.05328
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1912.04958
https://hojonathanho.github.io/diffusion/
https://arxiv.org/pdf/2010.02502.pdf
https://proceedings.neurips.cc/paper/2019/file/18cdf49ea54eec029238fcc95f76ce41-Paper.pdf
https://arxiv.org/abs/2106.12423
https://arxiv.org/abs/1905.01164
https://arxiv.org/abs/2011.13456

What has driven GAN progress?

3

• Loss functions:
cross-entropy, least square, Wasserstein loss, gradient penalty, Hinge loss, …

• Network architectures (G/D)
Conv layers, Transposed Conv layers, modulation layers (AdaIN, spectral norm)
mapping networks, …

• Training methods
1. coarse-to-fine progressive training
2. using pre-trained classifiers (multiple classifiers, random projection)

• Data
data alignment, differentiable augmentation

• GPUs
bigger GPUs = bigger batch size (stable training) + higher resolution

Jun-Yan Zhu
16-726 Learning-based Image Synthesis, Spring 2022

Generative Model Zoo

© ATOM

4

many slides from Phillip Isola, Richard Zhang, Alyosha Efros
4

Learning a generative model

[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]

latent variables

5

http://introtodeeplearning.com/materials/2019_6S191_L4.pdf

[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]

Learning a density model

Normalized distribution
(some models output unormalized energy functions)

6

Useful for abnormality/outlier detection (detect unlikely events)

Integral of probability density function needs to be 1

http://introtodeeplearning.com/materials/2019_6S191_L4.pdf

Case study #1: Fitting a Gaussian to data

fig from [Goodfellow, 2016]

Max likelihood objective

Closed form optimum:

Considering only Gaussian fits

7

Maximum log likelihood=minimize KLD

KLD (Kullback–Leibler divergence): KL(p||q) = p(x) log
p(x)

q(x)
dx

JSD(p ‖ q) =
1

2
KL(p ‖

p+ q

2
) +

1

2
KL(q ‖

p+ q

2
)JSD (Jensen–Shannon divergence):

Ex∼pdata(x)[log pθ(x)] =
x

pdata(x) log pθ(x)dx

=
x

pdata(x) log pdata(x)dx−

x

pdata(x) log pθ(x)dx

Constant
(independent of 𝜃)

Maximize log likelihood=minimize KLD
8

Case study #2: Generative Adversarial Network

Deep nets G and D

Alternating SGD on G and D

min
G

max
D

Ez[log(1−D(G(z))]+Ex[logD(x)]

9

Proof

is the unique global minimizer of the GAN objective.

KLD (Kullback–Leibler divergence): KL(p||q) = p(x) log
p(x)

q(x)
dx

JSD(p ‖ q) =
1

2
KL(p ‖

p+ q

2
) +

1

2
KL(q ‖

p+ q

2
)JSD (Jensen–Shannon divergence):

Optimal discriminator given fixed G

10

Case study #3: learning a deep generative model

SGD

Deep net

max likelihood
/distribution matching

11

SGD

Deep net

Models that provide a sampler but no density are called implicit generative models

Case study #3: learning a deep generative model

12

max likelihood
/distribution matching

Case study #3: learning a deep generative model

SGD

Deep net

max likelihood
/distribution matching

13

Variational Autoencoders (VAEs)

Prior distribution Target distribution

[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014]

Mixture of Gaussians

Target distribution

Variational Autoencoders (VAEs)

Target distributionPrior distribution
Density model:

Sampling:

[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014]

p(x|z; θ) ∼ N (x;Gµ
θ (z), G

σ
θ (z))

Variational Autoencoder (VAE)

Variational Autoencoders (VAEs)

Fitting a model to data requires computing
How to compute efficiently?

almost all terms are near zero

Train “inference network”
to give distribution over the z’s that are likely to produce x

Tutorial on VAEs [Doersch, 2016]

Approximate with

[Kingma and Welling, 2014]

Variational Autoencoders (VAEs)

reconstruction loss KLD loss

close to p(z)

Multi-variate Gaussian

encoder
qψ(z|x)

z = Eµ
ψ(x) + Eσ

ψ(x) · εz generator
pθ(x|z)

x̂ = Gµ
θ (z) +Gσ

θ (z) · ε

||x− x̂||2 KLD(N (Eµ
ψ(x), E

σ
ψ(x)) | N (0, I))

[Kingma and Welling, 2014]

Autoencoders (AEs)

reconstruction loss

close to p(z)

encoder
qψ(z|x)

z = Eµ
ψ(x) + Eσ

ψ(x) · εz generator
pθ(x|z)

x̂ = Gµ
θ (z) +Gσ

θ (z) · ε

||x− x̂||2
[Hinton and Salakhutdinov, Science 2006]

21

Variational Autoencoders (VAEs)

[Kingma and Welling, 2014]
VAE with two-dimensional latent space

How to improve VAE?
• Why are the results blurry?

o L2 reconstruction loss?

o Lower bound might not be tight?

• How can we further improve results?

22

VAE + Perceptual Loss

23

Perceptual loss KLD loss

close to p(z)

Multi-variate Gaussian

encoder
qψ(z|x)

z = Eµ
ψ(x) + Eσ

ψ(x) · εz generator
pθ(x|z)

x̂ = Gµ
θ (z) +Gσ

θ (z) · ε

KLD(N (Eµ
ψ(x), E

σ
ψ(x)) | N (0, I))||F (x)− F (x̂)||2

VAE + GANs

Autoencoding beyond pixels using a learned similarity metric [Larsen et al. 2015]

VAE + GANs

[Larsen et al. 2015]
VAE(Disl) = VAE + feature matching loss

Variational Autoencoder (VAE)

Variational Bayes

Autoregressive Model

27

Texture synthesis by non-parametric sampling

p

Synthesizing a pixel

non-parametric
sampling

Input image

[Efros & Leung 1999]

Models

[PixelRNN, PixelCNN, van der Oord et al. 2016]

Input partial
image

“white”

Autoregressive image synthesis

Predicted color
of next pixel

Input partial
image

Predicted color
of next pixel

“white”

…

[PixelRNN, PixelCNN, van der Oord et al. 2016]

…
0

1

Prediction for a single pixel i,j

gr
ee

n

gr
ay

bl
ue te
al

br
ow

n

re
d

vi
ol
et

or
an

ge

Recall: we can represent colors as discrete classes

Softmax regression (a.k.a. multinomial logistic regression)

predicted probability of
each class given input x

max likelihood learner!

picks out the -log likelihood
of the ground truth class
under the model prediction

And we can interpret the learner as modeling P(next pixel | previous pixels):

One-hot vector

Cross-entropy loss

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

p

pr
ob

ab
ilit

y

P(next pixel | previous pixels)

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

p

pr
ob

ab
ilit

y

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

pr
ob

ab
ilit

y

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

pr
ob

ab
ilit

y

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

pr
ob

ab
ilit

y

Samples from PixelRNN

[PixelRNN, van der Oord et al. 2016]

Image completions (conditional samples) from PixelRNN

[PixelRNN, van der Oord et al. 2016]

PixelCNN vs. PixelRNN

41

PixelRNN
Checkout PixelCNN++ [Salimans et al.,2017] (+ coarse-to-fine, ResNet, whole pixels, etc.)

How to improve PixelCNN?

• What are the limitations of PixelCNN/RCN?

o Slow sampling time.

o May accumulate errors over multiple steps.
(might not be a big issue for image completion)

• How can we further improve results?

42

VQ-VAE-2 :VAE+PixelCNN

43Generating Diverse High-Fidelity Images with VQ-VAE-2 [Razavi et al., 2019]

VQ (Vector quantization) maps continuous vectors into discrete codes
Common methods: clustering (e.g., k-means)

VQ-VAE-2: VAE+PixelCNN

44 [Razavi et al., 2019]

VAE+VQ: learn a more compact codebook for PixelCNN (instead of pixels)
PixelCNN: use a more expressive bottleneck for VAE (instead of Gaussian)

VQ-VAE-2: VAE+PixelCNN

45 [Razavi et al., 2019]

VAE+VQ: learn a more compact codebook for PixelCNN (instead of pixel colors)
PixelCNN: use a more expressive bottleneck for VAE (instead of Gaussian prior)

[Wavenet, https://deepmind.com/blog/wavenet-generative-model-raw-audio/]

Auto-regressive models works extremely well for audio/music data.

WaveNet

Autoregressive Model

Autoregressive probability model

General product rule

The sampling procedure we defined above takes exact samples from the
learned probability distribution (pmf).

Multiplying all conditionals evaluates the probability of a full joint
configuration of pixels.

Bijective:

Flow-based models

G = f−1f and

- x and z have the same number of dimensions (memory; training speed)
- limited choices of f and G
+ Fast sample; accurate density estimate

[Dinh et al., 2016]

Flow-based models

• Density estimate

50

Generator G = f−1

x ∼ pdata(x)

• Sampling

z = f (x)

z ∼ p(z)

x = G(z)

[Dinh et al., 2016]

Flow-based models

• Density estimate

51

Generator G = f−1

x ∼ pdata(x)

• Sampling

z = f (x)

z ∼ p(z)

x = G(z)

[Dinh et al., 2016]

pdata(x) = pz(f (x))| det(
∂f (x)

∂xT
)|

log pdata(x) = log(pz(f (x)))+log(| det(
∂f (x)

∂xT
)|)

Training objective

Easy to compute
as z follows Gaussian distribution

hard to compute
Jacobian determinant

for most layers

Change of variable formula

design layers whose Jacobian determinant
is a triangular matrix

52

Flow-based models

Real NVP [Dinh et al., ICLR 2017]

Glow [Kingma and Dhariwal, NeurIPS 2018]

Reading list

Diffusion Model

53

Add Gaussian noise Learn to denoise

SDEdit [Meng et al., ICLR 2022]

From the blog: https://yang-song.github.io/blog/2021/score/

Diffusion Model

54

Reading list

DDPM [Ho, Jain, Abbeel, NeurIPS 2020]

DDIM [Song, Meng, Ermon, ICLR 2021] Score-based Model [Song et al., ICLR 2021]

Diffusion model [Sohl-Dickstein et al., ICML 2015]

Ideal models (Dream)

Pros: Exact likelihoods, good coverage
Cons: Slow to evaluate or sample

VAEs
Pros: Cheap to sample, good coverage
Cons: Blurry samples (in practice)

GANs
Pros: Cheap to sample, fast to train, good samples
Cons: No likelihoods (density), bad coverage (mode collapse)

[adapted from Phillip Isola and David Duvenaud]

Flow-based models
Pros: Cheap to sample, exact likelihoods
Cons: memory-intensive; slow training; limited choices for generators,

high-dimensional codes

Autoregressive models

Pros: good sample, fast sample, Exact/fast likelihoods
good coverage, easy to training, learn low-dimensional latent representation.

Diffusion models
Pros: good samples, good coverage
Cons: slow training, slow sampling

Which model is better?
• It depends on your applications

• Synthesis

• Classification

• Density estimation

• Which model is easier to train?

• Which model is faster (training & inference)?

56

Thank You!

16-726, Spring 2022
https://learning-image-synthesis.github.io/sp22/

57 © ATOM

https://learning-image-synthesis.github.io/sp22/

