HW2

cloning

seamless cloning

sources/destinations

Student Presentation (Generative Models)

paper titles	venue	speakers
A Style-Based Generator Architecture for Generative Adversarial		
Networks (StyleGAN)	CVPR 2019	
Large Scale GAN Training for High Fidelity Natural Image Synthesis		
(BigGAN)	ICLR 2019	
	NeurIPS	
Generating Diverse High-Fidelity Images with VQ-VAE-2 (VQ-VAE-2)	2019	
	NeurIPS	
Conditional Image Generation with PixelCNN Decoders (PixelCNN)	2016	
	NeurIPS	
Glow: Generative Flow with Invertible 1x1 Convolutions (Glow)	2018	
Analyzing and Improving the Image Quality of StyleGAN (StyleGAN2)	CVPR 2020	
	NeurIPS	
Denoising Diffusion Probabilistic Models (DDPM)	2020	
Denoising Diffusion Implicit Models (DDIM)	ICLR 2021	
Large scale adversarial representation learning (BigBiGAN)	ICLR 2019	
	NeurIPS	
Alias-Free Generative Adversarial Networks (StyleGAN3)	2021	
SinGAN: Learning a Generative Model from a Single Natural Image		
(SinGAN)	ICCV 2019	
Score-Based Generative Modeling through Stochastic Differential		
Equations (SDE)	ICLR 2021	

What has driven GAN progress?

Loss functions:

cross-entropy, least square, Wasserstein loss, gradient penalty, Hinge loss, ...

Network architectures (G/D)

Conv layers, Transposed Conv layers, modulation layers (AdaIN, spectral norm) mapping networks, ...

• Training methods

1. coarse-to-fine progressive training

2. using pre-trained classifiers (multiple classifiers, random projection)

Data

data alignment, differentiable augmentation

• GPUs

bigger GPUs = bigger batch size (stable training) + higher resolution

Generative Model Zoo Jun-Yan Zhu

16-726 Learning-based Image Synthesis, Spring 2022

many slides from Phillip Isola, Richard Zhang, Alyosha Efros

4

Learning a generative model

[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]

Integral of probability density function needs to be 1 — Normalized distribution (some models output unormalized *energy functions*)

[figs modified from: <u>http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]</u>

Useful for abnormality/outlier detection (detect unlikely events)

Case study #1: Fitting a Gaussian to data

Maximum log likelihood=minimize KLD

KLD (Kullback–Leibler divergence): $\mathcal{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$ JSD (Jensen–Shannon divergence): $\mathcal{JSD}(p \parallel q) = \frac{1}{2}\mathcal{KL}(p \parallel \frac{p+q}{2}) + \frac{1}{2}\mathcal{KL}(q \parallel \frac{p+q}{2})$ $\mathbb{E}_{x \sim p_{\text{data}}(x)}[\log p_{\theta}(x)] = \int p_{\text{data}}(x) \log p_{\theta}(x) dx$ $\mathcal{KL}(p_{ ext{data}}(x)||p_{ heta}(x)) = \int_{x} p_{ ext{data}}(x) \log rac{p_{ ext{data}}(x)}{p_{ heta}(x)} dx$ $= \int_{x} p_{\text{data}}(x) \log p_{\text{data}}(x) dx - \int_{x} p_{\text{data}}(x) \log p_{\theta}(x) dx$ \uparrow Constant
Maximize log likelihood=minimize KLD (independent of θ) 8

Case study #2: Generative Adversarial Network

 $p_g = p_{data}$ is the unique global minimizer of the GAN objective.

Proof

$$C(G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}}[\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g}[\log(1 - D_G^*(\boldsymbol{x}))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}}\left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})}\right] + \mathbb{E}_{\boldsymbol{x} \sim p_g}\left[\log \frac{p_g(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})}\right]$$

$$C(G) = -\log(4) + KL\left(p_{\text{data}} \left\|\frac{p_{\text{data}} + p_g}{2}\right) + KL\left(p_g \left\|\frac{p_{\text{data}} + p_g}{2}\right)\right)$$

$$C(G) = -\log(4) + 2 \cdot JSD\left(p_{\text{data}} \|p_g\right)$$

 $\geq 0, \quad 0 \iff p_g = p_{data} \quad \square$ KLD (Kullback–Leibler divergence): $\mathcal{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$ JSD (Jensen–Shannon divergence): $\mathcal{JSD}(p \parallel q) = \frac{1}{2} \mathcal{KL}(p \parallel \frac{p+q}{2}) + \frac{1}{2} \mathcal{KL}(q \parallel \frac{p+q}{2})$ 10

Case study #3: learning a deep generative model

Case study #3: learning a deep generative model

Models that provide a sampler but no density are called **implicit generative models**

Case study #3: learning a deep generative model

Variational Autoencoders (VAEs)

[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014]

Prior distribution Target distribution

Mixture of Gaussians

$$p_{\theta}(x) = \sum_{i=1}^{k} w_i \mathcal{N}(x; u_i, \Sigma_i)$$

Variational Autoencoders (VAEs)

[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014]

Prior distribution

Target distribution

Density model: $p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$ $p(x|z;\theta) \sim \mathcal{N}(x;G^{\mu}_{\theta}(z),G^{\sigma}_{\theta}(z))$

Sampling: $z \sim p(z) \quad \epsilon \sim \mathcal{N}(0, 1)$ $x = G^{\mu}_{\theta}(z) + G^{\sigma}_{\theta}(z)\epsilon$

Variational Autoencoder (VAE)

Variational Autoencoders (VAEs)

Fitting a model to data requires computing $p_{\theta}(x)$

How to compute $p_{\theta}(x)$ efficiently?

 $p_{\theta}(x) = \int p(x|z;\theta)p(z)dz \quad \longleftarrow \text{ almost all terms are near zero}$

Train "inference network" $q_\psi(z|x)$ to give distribution over the z's that are likely to produce x

Approximate $p_{\theta}(x)$ with $\mathbb{E}_{q_{\psi}(z|x)}[p_{\theta}(x|z)]$

[Kingma and Welling, 2014] Tutorial on VAEs [Doersch, 2016]

[Hinton and Salakhutdinov, Science 2006]

Variational Autoencoders (VAEs)

 \mathbf{n}

VAE with two-dimensional latent space

[Kingma and Welling, 2014]

How to improve VAE?

- Why are the results blurry?
 - L2 reconstruction loss?
 - Lower bound might not be tight?

• How can we further improve results?

VAE + GANs

Autoencoding beyond pixels using a learned similarity metric [Larsen et al. 2015]

VAE + GANs

VAE $VAE_{Dis_{l}}$ VAE/GAN GAN

VAE(Disl) = VAE + feature matching loss

[Larsen et al. 2015]

Variational Autoencoder (VAE)

Autoregressive Model

Texture synthesis by non-parametric sampling

[Efros & Leung 1999]

Synthesizing a pixel

Models P(p|N(p))

Autoregressive image synthesis

[PixelRNN, PixelCNN, van der Oord et al. 2016]

[PixelRNN, PixelCNN, van der Oord et al. 2016]

Recall: we can represent colors as discrete classes

 $\mathcal{L}(\mathbf{y}, f_{\theta}(\mathbf{x})) = H(\mathbf{y}, \texttt{softmax}(f_{\theta}(\mathbf{x})))$

And we can interpret the learner as modeling P(next pixel | previous pixels):

Softmax regression (a.k.a. multinomial logistic regression)

$$\hat{\mathbf{y}} \equiv [P_{\theta}(Y = 1 | X = \mathbf{x}), \dots, P_{\theta}(Y = K | X = \mathbf{x})] \quad \longleftarrow \text{ predicted probability of each class given input } \mathbf{x}$$

$$H(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{k=1}^{K} y_k \log \hat{y}_k \quad \longleftarrow \text{ picks out the -log likelihood of the ground truth class } \mathbf{y}$$

$$\text{under the model prediction } \hat{\mathbf{y}}$$

$$f^* = \arg \min_{f \in \mathcal{F}} \sum_{i=1}^{N} H(\mathbf{y}_i, \hat{\mathbf{y}}_i) \quad \longleftarrow \text{ max likelihood learner!}$$

$$\text{Cross-entropy loss}$$

P(next pixel | previous pixels) $P(p_i|p_1, \cdots, p_{i-1})$

 $p_1 \sim P(p_1)$ $p_2 \sim P(p_2|p_1)$ $p_3 \sim P(p_3|p_1, p_2)$ $p_4 \sim P(p_4|p_1, p_2, p_3)$

 $\{p_1, p_2, p_3, p_4\} \sim P(p_4|p_1, p_2, p_3)P(p_3|p_1, p_2)P(p_2|p_1)P(p_1)$

 $p_i \sim P(p_i | p_1, \ldots, p_{i-1})$

 $\mathbf{p} \sim \prod_{i=1}^{N} P(p_i | p_1, \dots, p_{i-1})$

Samples from PixelRNN

[PixelRNN, van der Oord et al. 2016]

Image completions (conditional samples) from PixelRNN occluded completions original

[PixelRNN, van der Oord et al. 2016]

PixelCNN vs. PixelRNN

Checkout PixelCNN++ [Salimans et al., 2017] (+ coarse-to-fine, ResNet, whole pixels, etc.)

How to improve PixelCNN?

• What are the limitations of PixelCNN/RCN?

• Slow sampling time.

- May accumulate errors over multiple steps.
 (might not be a big issue for image completion)
- How can we further improve results?

VQ-VAE-2 :VAE+PixelCNN

VQ (Vector quantization) maps continuous vectors into discrete codes Common methods: clustering (e.g., k-means)

Generating Diverse High-Fidelity Images with VQ-VAE-2 [Razavi et al., 2019]

VQ-VAE-2: VAE+PixelCNN

VQ-VAE Encoder and Decoder Training

<u>VAE+VQ</u>: learn a more compact codebook for PixelCNN (instead of pixels) <u>PixelCNN</u>: use a more expressive bottleneck for VAE (instead of Gaussian) [Razavi et al., 2019]

VQ-VAE-2: VAE+PixelCNN

Generation

VAE+VQ: learn a more compact codebook for PixelCNN (instead of pixel colors) PixeICNN: use a more expressive bottleneck for VAE (instead of Gaussian prior) [Razavi et al., 2019]

[Wavenet, https://deepmind.com/blog/wavenet-generative-model-raw-audio/]

Auto-regressive models works extremely well for audio/music data.

Autoregressive Model

Autoregressive probability model

$$\mathbf{p} \sim \prod_{i=1}^{N} P(p_i | p_1, \dots, p_{i-1})$$

$$P(\mathbf{p}) = \prod_{i=1}^{N} P(p_i | p_1, \dots, p_{i-1}) \quad \longleftarrow \text{ General product rule}$$

The sampling procedure we defined above takes exact samples from the learned probability distribution (pmf).

Multiplying all conditionals evaluates the probability of a full joint configuration of pixels.

- x and z have the same number of dimensions (memory; training speed)

- limited choices of f and G
- + Fast sample; accurate density estimate

[Dinh et al., 2016]

• Density estimate $x \sim p_{data}(x)$ z = f(x)

• Sampling $z \sim p(z)$ x = G(z) \downarrow Generator $G = f^{-1}$

Training objective

• Density estimate

 $x \sim p_{data}(x)$

z = f(x)

Change of variable formula

$$p_{\text{data}}(x) = p_z(f(x)) |\det(\frac{\partial f(x)}{\partial x^T})|$$

$$\log p_{\text{data}}(x) = \log(p_z(f(x))) + \log(|\det(\frac{\partial f(x)}{\partial x^T})|)$$

• Sampling $z \sim p(z)$ x = G(z)

Easy to compute as z follows Gaussian distribution hard to compute Jacobian determinant for most layers

Generator $G = f^{-1}$

design layers whose Jacobian determinant is a triangular matrix

Reading list

Real NVP [Dinh et al., ICLR 2017]

Glow [Kingma and Dhariwal, NeurIPS 2018]

Diffusion Model

Add Gaussian noise Learn to denoise From the blog: https://yang-song.github.io/blog/2021/score/

Output

Input

SDEdit [Meng et al., ICLR 2022]

Diffusion Model

Reading list

Diffusion model [Sohl-Dickstein et al., ICML 2015] DDPM [Ho, Jain, Abbeel, NeurIPS 2020]

DDIM [Song, Meng, Ermon, ICLR 2021]

Score-based Model [Song et al., ICLR 2021]

Ideal models (Dream)

Pros: good sample, fast sample, Exact/fast likelihoods

good coverage, easy to training, learn low-dimensional latent representation.

Autoregressive models

Pros: Exact likelihoods, good coverage Cons: Slow to evaluate or sample

VAEs

Pros: Cheap to sample, good coverage Cons: Blurry samples (in practice)

GANs

Pros: Cheap to sample, fast to train, good samples

Cons: No likelihoods (density), bad coverage (mode collapse)

Flow-based models

Pros: Cheap to sample, exact likelihoods

Cons: memory-intensive; slow training; limited choices for generators, high-dimensional codes

Diffusion models

Pros: good samples, good coverage

Cons: slow training, slow sampling

[adapted from Phillip Isola and David Duvenaud]

Which model is better?

- It depends on your applications
 - Synthesis
 - Classification
 - Density estimation
- Which model is easier to train?
- Which model is faster (training & inference)?

Thank You!

16-726, Spring 2022

https://learning-image-synthesis.github.io/sp22/